Problem 5: They did surgery on a string! 6+4+3 Points

Problem ID: strgery
Rank: 2+3+3

Introduction

Problem Statement

Given a string \mathbf{S} and another string \mathbf{P}, find the positions of two non-empty non-overlapping substrings of \mathbf{S}, such that concatenating them will yield \mathbf{P}.

A substring is defined as a contiguous segment of characters from a string. For example, lico, ca and a are substrings of calico but alco is not.

Concatenating is defined as putting two strings next to each other to create a new string. For example, concatenating cali and co yields calico

If there is no solution, output IMPOSSIBLE
© 2024 California Informatics Competition

Input Format

The first line of the input contains a single integer \mathbf{T} denoting the number of test cases that follow. For each test case:

- The first line contains the string \mathbf{S}, the string from which to find the substrings.
- The second line contains the string \mathbf{P}, the string to make by concatenating substrings.

Output Format

For each test case, output a single line containing four space-separated integers $s_{1} l_{1} s_{2} l_{2}$ where:

- s_{1} denotes the starting position of the first substring.
- l_{1} denotes the length of the first substring.
- s_{2} denotes the starting position of the second substring.
- l_{2} denotes the length of the second substring.
such that concatenating the first substring and the second substring yields \mathbf{P}. When giving positions, the position of the first character is 0 (zero-indexed), the position of the second character is 1 , the position of the third character is 2 , and so on.

If there is no solution, output IMPOSSIBLE instead.

Constraints

\mathbf{S} and \mathbf{P} contain exclusively letters from the lowercase English alphabet:
abcdefghijklmnopqrstuvwxyz

Main Test Set

$1 \leq \mathbf{T} \leq 100$
$1 \leq|\mathbf{S}| \leq 20$
$1 \leq|\mathbf{P}| \leq 20$

Bonus Test Set 2
$\mathbf{T}=1$
$1 \leq|\mathbf{S}| \leq 10^{5}$
$1 \leq|\mathbf{P}| \leq 10^{5}$

Bonus Test Set 1

$\mathbf{T}=1$
$1 \leq|\mathbf{S}| \leq 1000$
$1 \leq|\mathbf{P}| \leq 1000$

Sample Test Cases

Sample Input Download	Sample Output Download
7	07106
surgeryonastring	$\begin{array}{lllll}9 & 7 & 0\end{array}$
surgerystring	73143
surgeryonastring	IMPOSSIBLE
astringsurgery	IMPOSSIBLE
strgerystrgerystrgerystrgery	0111
strstr	IMPOSSIBLE
surgeryonastring	
stringonasurgery	Note that this is one of many possible
aaaaaaab	correct outputs. If there are multiple
aaaaaaaaa	solutions, you may output any of them.
ab	
ab	
a	
a	

Sample Explanations

Test Case \#1:

We can construct surgerystring from surgeryonastring by first taking the substring starting at position 0 with length 7 (surgery) and then concatenating it with the substring starting at position 10 with length 6 (string). Concatenating surgery and string yields surgerystring for our desired answer.

Test Case \#2:

We can construct astringsurgery from surgeryonastring by taking the substring at position 9 of length 7 (astring) and the substring at position 0 of length 7 (surgery). Note that this is a valid solution despite the first substring having a higher start position than the second substring.

Test Case \#3:

There are many possible solutions to this test case, as there are many different ways to find the substring strin strgerystrgerystrgerystrgery.

Test Case \#4:

This test case is impossible, so we output IMPOSSIBLE

Memes

This page is not part of the problem. These are only here to maintain an even page count.

$S U R G E R Y \quad I N \quad B I O$

